Article from the Archives: ‘Titanic: Allegations & Evidence’

 

In summer 2007, many sensationalist claims were made about the Titanic disaster.  It is a topic which made headlines in 1912 and it remains newsworthy today.  Editors know that the ship’s name will draw attention.  Unfortunately, sensationalism is often what draws attention in the mass media. One example of this was a headline in a United Kingdom newspaper:

‘Titanic faced disaster from the moment it set sail, experts now believe…Even if the ocean liner had not struck an iceberg during its maiden voyage, structural weaknesses made it vulnerable to any stormy sea’. (Copping, Jasper. ‘Revealed: Titanic Was Doomed Before it Set Sail’, Daily Telegraph 10 June 2007)

The arguments in the media and on television included the claim that Titanic was not built to be strong enough for her intended service; that the enclosure of the fore end of the A-deck promenade was intended to strengthen the ship; and that the shipbuilders Harland & Wolff, at the behest of the White Star Line, had been forced to reduce the thickness of the hull plating to save money.  None of these claims were based on evidence.  (Why let the facts get in the way of a good story?)

 

All of these claims are addressed point by point in my article, Titanic: Allegations & Evidence, which was published back in 2015.   (You can also listen to a detailed discussion of all these topics in the Steam & Splendor podcasts I participated in.)

 

 


 

FAQ: Were Olympic, Titanic & Britannic Built to the Same Standard of Strength?

FAQ: Were Olympic, Titanic & Britannic Built to the Same Standard of Strength?

 

A question came up a while ago in an online discussion forum concerning the construction of the three ‘Olympic’ class ships. The poster asked: ‘I mainly want to know if one was built a little stronger than the other’.  The issue of strength is a complex one. However, my answer to that is that all three ships were built to the same standard of strength. I’ll explain an example of that standard.

William David Archer, who was the Principal Ship Surveyor to the Board of Trade (since 1898), explained how a key measure of strength was calculated, to take into account the ship’s structure [scantlings], length, weight [displacement] and tendency to bend:

24323. How do you test your standard of strength – how do you arrive at your standard of strength apart from the question of scantlings?
– We do this. We get from the builders the drawings of the vessel. One of these drawings is a midship section. That midship section is a section as if you cut the ship right through the middle. It shows the thickness of all the plates, the longitudinal members of the ship – for example, the thickness and width of all the plates forming the skin of the ship and the deck of the ship.
24324. But those are the scantlings, are they not?
– Those are the scantlings of the ship. We then make an estimate of what the stress on the gunwale of that ship in tons per square inch will be, on the assumption that the vessel is subjected to a bending moment equal to the whole displacement of the ship, in this case about 52,000 tons multiplied by one -thirtieth of the vessel’s length. In that way we get at a certain figure of so many tons per square inch on the shear strake [hull plating at the side of C-deck].

In the case of Olympic and Titanic, that estimate of stress came to 9.89 tons per square inch. This is very much in line with the standard shipbuilders of the period worked to for mild steel ships, which was to work to about 10 tons or less. On this measure, they were about the same or stronger than all the other large liners of the period that I have data for, excepting Oceanic and Aquitania. The figure may have differed slightly for Britannic, because she was a little wider and had a correspondingly greater weight (displacement) of about 1.6 per cent, which would have increased her bending moment.

We know from the Olympic/Titanic and Britannic midship section plans that the fundamental structural details of all three ships (including the keel, double bottom, hull plating, hull frames, columns, pillars, deck beams, etc.) were all the same. The scantlings (dimensions and thicknesses of these key structural components) were the same. There should be nothing surprising about this. Although we hear so much about the substantially greater size of these ships measured by gross tonnage, in terms of displacement they were ‘only’ about 27 percent heavier than ships such as Adriatic. Harland & Wolff had a lot of practical experience as well as theoretical design principles to determine the structural design requirements. By way of some benchmark comparisons, it is telling that these ships’ scantlings are very similar to other large liners of the period such as Lusitania (1907), Aquitania (1914), Imperator/Berengaria (1913). They are also comparable to Queen Mary (1936).

Harland & Wolff were also familiar with the standards of Lloyd’s classification society. Naval architect Edward Wilding said that ‘about one-third to one-half’ of the ships Harland & Wolff built were classed by Lloyds. He was questioned about Lloyds requirements as well as Olympic’s construction (both as built in 1911 and following the modifications to improve her watertight subdivision in 1912-13) when he testified for the Limitation of Liability hearings in May 1915:

Q. When you have mentioned the construction of the Olympic, have you referred to the original construction of the Olympic or the construction as she is today?
– The construction is generally the same, as structurally we have made very little change.

He went on to say:

Q. Do you mean to say that from your knowledge of the customs at Lloyds the Titanic would have been passed at Lloyds without any change whatever?
– I can’t put it any higher than this: I believe if we were to offer the Olympic today to Lloyds they would class her without making any further requirement. I have no authority for it, though.

Q. That is, the Olympic in her present condition?
– Or as she was finished originally. We have made no change that would affect Lloyds classification; none of the changes made would have affected Lloyds’ views as to classing her.

Wilding stated that Harland & Wolff had to do fewer repairs to Olympic than any other large ship they had built. Their experience operating Olympic in both summer and winter conditions up to early 1912 led them to make only minor modifications, including to the foremost hatch design and its cover. The result was that, when ‘Yard Number 433’ (Britannic) was ordered in 1911, her structural design and scantlings were a duplicate of Olympic/Titanic in all major respects.

When, following the Titanic disaster, White Star specified that Olympic and Britannic needed to be modified to float with an unprecedented number of watertight compartments flooded, the only reason that some of the watertight bulkheads (and the watertight doors in them) were strengthened was because those particular watertight bulkheads were being extended so much higher. The original watertight bulkheads were already built to a very high standard of strength. The plating and stiffening were both well in excess of Lloyd’s requirements which post-dated the Titanic disaster and the Board of Trade had noted the strength of the bulkheads throughout was ‘very ample’, after doing a detailed comparison between the structural design compared to what the regulations required. Edward Wilding noted that a head of water ‘about 150 feet’ deep from the bottom of the watertight bulkheads would have been needed to break the lower part of them, which was many times higher than the head of water they would ever have been called upon to hold back.  Nonetheless, to ensure a good margin of safety the watertight bulkheads which were raised were also strengthened further.

We know Cunard changed aspects of Aquitania‘s design to bring her closer into line with Olympic after their naval architect, Leonard Peskett, examined her in 1911. In 1925, the Board of Trade’s Chief Ship Surveyor used comparative data from Olympic as a benchmark example of a strong ship, as did a professional from the consultant naval architectural firm Roscoe & Little, based in Liverpool. Roscoe & Little were doing an analysis of options for different schemes of repair to the White Star liner Majestic (originally HAPAG’s Bismarck, launched in 1914), which had suffered a significant structural failure in stormy seas during December 1924.  Those schemes ranged from a minimalist one restoring Majestic to her strength as originally completed in 1922, to a much more substantial proposal which would significantly increase her strength.  (Roscoe & Little noted that under the minimalist scheme of repair, they estimated that Majestic would be about 20 percent weaker than Olympic.)  These examples help illustrate the context in which shipbuilding professionals viewed Olympic at the time.

There seem to be many people who think Titanic was a ‘weak’ ship, given that she broke up in the final stage of sinking. In reality, her stern was lifted out of the water for an extended period, subjecting her to stresses a multiple of what she would have experienced in the worst North Atlantic storm.  Any structure will fail if it is subjected to stresses far beyond what it was designed for.  That hasn’t stopped all too many conspiracy theorists taking key details out of context in recent years.

 

 

Above: Olympic as built, 1911.  Eight of the fifteen watertight bulkheads extended up to D-deck and the remainder to E-deck.  Her watertight subdivision was designed on the basis that she needed to float with any two compartments flooded, but Harland & Wolff built in such a margin of safety that she was largely a three-compartment ship.  She would also float in a number of scenarios with four compartments flooded.  (The Shipbuilder, 1911/Bruce Beveridge collection – modified to show the outline of watertight bulkheads)

 


 

Article from the Archives: ‘Olympic & Titanic: Refining a Design’

 

Mark Chirnside’s Reception Room first came online back on 1 April 2005!  Since then, it has expanded substantially and been redesigned twice (2007 and 2022) to keep it fit for purpose.  The nature of the internet and online content means that so many websites which were available then are no longer with us.  One of those websites was the Titanic Research & Modelling Association (TRMA) which was pioneering in its day. (Fortunately, much of it is archived and preserved as a static site.)

 

My article ‘Olympic & Titanic: Refining a Design‘, is a revised and expanded version of a short article of mine published by TRMA in 2005.  It was published in the British Titanic Society’s Atlantic Daily Bulletin 2019: Pages 18-22.     

Author’s Note: Back in 2005, I published information about some previously unknown refinements to Titanic based on experience Harland & Wolff gained from observing Olympic during a particularly severe North Atlantic storm in January 1912. The article was published on the Titanic Research & Modelling Association (TRMA) website. It discussed some modifications to some of her rivetted joints fore and aft: Olympic’s great length meant that the stresses at these points – from about a quarter of her length ahead of the stern and a quarter of her length abaft the bow – required some additional reinforcement, beyond what previous experience had suggested was necessary, to prevent rivets in these areas becoming gradually slack in severe weather conditions.

It goes to show how much we are still learning about the ‘Olympic’ class ships all these years later, but the demise of the TRMA website offered an opportunity to publish this new article. It contains the original article’s information about the changes to Titanic, supplemented by additional material, including new diagrams of both Titanic and Britannic, and contextual information about other large liners of the period.

When I published this information for the first time all those years ago, my view was that these refinements demonstrated the fundamental strength of Olympic. Harland & Wolff were following their usual practice, as Edward Harland had explained back in 1873, of using their experience from operating new ships over their early voyages to proactively make improvements to them and their sister ships.  She experienced a storm in January 1912 which was one of the worst of her entire career and which Captain Smith reportedly said was the worst he had ever seen in all his decades of North Atlantic service.  The North Atlantic in winter storm conditions is an extremely hostile environment but she came through it: the modifications were not intended to remedy any serious defect which had occurred but to prevent future maintenance requirements.  Ships such as Olympic were built as fast passenger and mail steamers, designed to run through these hostile conditions even at relatively high speed.   

 

Nonetheless, I was contacted shortly after the original article’s publication by an American conspiracy theorist who was trying to argue that Titanic was a weak ship that sank because she broke up, rather than the reality that she was a strong ship which broke up in the final stages of sinking. (The cause of the breakup is that she was exposed to stresses over a prolonged period that were far greater than what she would have experienced in the worst possible storm conditions that she was designed for. No comparable passenger liner was designed to have her stern raised clear of the water for an extended period, unsupported.)  He sought to use the information I had published (which he mischaracterised and deliberately took out of context) to support his claims and, unfortunately, all too many others followed suit:  It is a very common problem with Titanic that many people look at her in isolation without looking at the broader context or doing an objective analysis.  That context includes her sister ships as well as other large liners of the period.

 

Sensationalism is often what draws attention in the mass media and one example of this was a headline in a United Kingdom newspaper, which echoed his claims:

‘Titanic faced disaster from the moment it set sail, experts now believe…Even if the ocean liner had not struck an iceberg during its maiden voyage, structural weaknesses made it vulnerable to any stormy sea’. (Copping, Jasper. ‘Revealed: Titanic Was Doomed Before it Set Sail’, Daily Telegraph 10 June 2007)

This headline stands in stark contrast to the assessments of experienced professionals at the time, summarised by two short quotes from a number of examples.  Edward Wilding, Harland & Wolff naval architect, 1915:

We have had less repairs to the Olympic than to any large ship we have ever built, due to external causes, of course’

Principal Ship Surveyor to the Board of Trade, 1925:

Olympic…has, I think, proved to be a successful ship in the matter of strength’.

On the positive side, the design changes outlined in my article have also been analysed and cited by serious researchers.  (For an analysis of these changes and their potential impact on Titanic, see Parks Stephenson’s article ‘What Caused Titanic to Sink?’ in the Titanic Historical Society’s Titanic Commutator 2014: Volume 39 Number 206. Pages 92- 100. See, also: Rudi Newman’s ‘A “Riveting” Article – an Historical Rejoinder to Metallurgical Studies of the Titanic Disaster’ in the British Titanic Society’s Atlantic Daily Bulletin 2012: Pages 18-30.)  Following on from my 2005 article, when The ‘Olympic’ Class Ships: Olympic, Titanic & Britannic was published (History Press; revised and expanded edition, 2011) I included this information on page 226.

 

 


 

Titanic’s ‘Achilles Heel’? Steam & Splendor Podcast – Season 1 Episodes 3-4

Titanic‘s ‘Achilles Heel’? Steam & Splendor Podcast – Season 1 Episodes 3-4 Mark Chirnside

 

 

 

I have to say that it’s the best Titanic related media I’ve ever heard or seen…your contribution to dispelling the myths is just outstanding.  Compelling and fascinating. 

All too often, sensationalist claims are made in the media about Titanic and the disaster which befell her. A typical theme is claims of an ‘Achilles Heel’, design ‘flaws’, poor materials or even that Titanic was doomed from the start.  The mundane reality that Titanic was a well built and designed ship, which sank because she sustained extraordinary damage as a result of an awesome encounter with an iceberg, does not make headlines.

I was pleased to participate in two podcast episodes where we discussed a large number of these issues over the course of nearly two hours.  We covered a great deal of material.  Grab a coffee and listen in!

Part 1: Hosts Tad Fitch and J. Kent Layton are joined by author and researcher Mark Chirnside for an eye-opening discussion that challenges everything you thought you knew about the Titanic and her sister ships. Over the years, myths have surfaced claiming these iconic liners were poorly designed, made with subpar materials, and doomed from the start. But how much of that is actually true? Join us as we discuss the allegations, break down what the actual historical documentation and context indicates, and dispel some long-held myths.

Part 2: Join hosts Tad Fitch and J. Kent Layton as they continue their discussion with researcher Mark Chirnside, diving into the historical record to uncover the truth about the safety, reliability, and durability of the Titanic and ‘Olympic’ Class ships. How well-designed and safe was RMS Olympic—both before and after its post-Titanic disaster refit? Tune in as they examine the evidence, compare the design of these ships to their contemporaries and debunk long-held myths.